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CS 188: Artificial Intelligence
Spring 2010

Lecture 19: Decision Diagrams

4/1/2010

Pieter Abbeel – UC Berkeley

Many slides over this course adapted from Dan Klein, Stuart Russell, 
Andrew Moore

Announcements

� Mid-Semester Evaluations

� Link is in your email

� Assignments

� W5 due tonight

� W6 out tonight
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Decision Networks

� MEU: choose the action which 
maximizes the expected utility 
given the evidence

� Can directly operationalize this 
with decision networks
� Bayes nets with nodes for 

utility and actions
� Lets us calculate the expected 

utility for each action

� New node types:
� Chance nodes (just like BNs)
� Actions (rectangles, cannot 

have parents, act as observed 
evidence)

� Utility node (diamond, depends 
on action and chance nodes)

Weather

Forecast

Umbrella

U
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Decision Networks

� Action selection:
� Instantiate all 

evidence
� Set action node(s) 

each possible way
� Calculate posterior 

for all parents of 
utility node, given 
the evidence

� Calculate expected 
utility for each action

� Choose maximizing 
action

Weather

Forecast

Umbrella

U
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Value of Information

� Idea: compute value of acquiring evidence
� Can be done directly from decision network

� Example: buying oil drilling rights
� Two blocks A and B, exactly one has oil, worth k
� You can drill in one location
� Prior probabilities 0.5 each, & mutually exclusive
� Drilling in either A or B has MEU = k/2

� Question: what’s the value of information?
� Value of knowing which of A or B has oil
� Value is expected gain in MEU from new info
� Survey may say “oil in a” or “oil in b,” prob 0.5 each
� If we know OilLoc, MEU is k (either way)
� Gain in MEU from knowing OilLoc?
� VPI(OilLoc) = k/2
� Fair price of information: k/2

OilLoc

DrillLoc

U

D O U

a a k

a b 0

b a 0

b b k

O P

a 1/2

b 1/2
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Value of Information
� Assume we have evidence E=e.  Value if we act now:

� Assume we see that E’ = e’.  Value if we act then:

� BUT E’ is a random variable whose value is
unknown, so we don’t know what e’ will be

� Expected value if E’ is revealed and then we act:

� Value of information: how much MEU goes up
by revealing E’ first:

P(s | e)

{e}
a

U

{e, e’}
a

P(s | e, e’)

U

{e}

P(e’ | e)

{e, e’}
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VPI Example: Weather

Weather

Forecast

Umbrella

U

A W U

leave sun 100

leave rain 0

take sun 20

take rain 70

MEU with no evidence

MEU if forecast is bad

MEU if forecast is good

F P(F)

good 0.59

bad 0.41

Forecast distribution
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VPI Properties

� Nonnegative

� Nonadditive ---consider, e.g., obtaining Ej twice

� Order-independent
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Quick VPI Questions

� The soup of the day is either clam chowder or split pea, 
but you wouldn’t order either one.  What’s the value of 
knowing which it is?

� There are two kinds of plastic forks at a picnic.  It must 
be that one is slightly better.  What’s the value of 
knowing which?

� You have $10 to bet double-or-nothing and there is a 
75% chance that Berkeley will beat Stanford.  What’s the 
value of knowing the outcome in advance?

� You must bet on Cal, either way.  What’s the value now?

Reasoning over Time

� Often, we want to reason about a sequence of 
observations
� Speech recognition

� Robot localization

� User attention

� Medical monitoring

� Need to introduce time into our models

� Basic approach: hidden Markov models (HMMs)

� More general: dynamic Bayes’ nets
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Markov Models

� A Markov model is a chain-structured BN
� Each node is identically distributed (stationarity)

� Value of X at a given time is called the state

� As a BN:

� Parameters: called transition probabilities or 
dynamics, specify how the state evolves over time 
(also, initial probs)

X2X1 X3 X4

Example: Markov Chain

� Weather:

� States: X = {rain, sun}

� Transitions:

� Initial distribution: 1.0 sun

� What’s the probability distribution after one step?

rain sun

0.9

0.9

0.1

0.1

This is a 
CPT, not a 

BN!
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Mini-Forward Algorithm

� Question: What’s P(X) on some day t?

� An instance of variable elimination!

sun

rain

sun

rain

sun

rain

sun

rain

Forward simulation
27

Example

� From initial observation of sun

� From initial observation of rain

P(X1) P(X2) P(X3) P(X
∞
)

P(X1) P(X2) P(X3) P(X
∞
)
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Stationary Distributions

� If we simulate the chain long enough:
� What happens?

� Uncertainty accumulates

� Eventually, we have no idea what the state is!

� Stationary distributions:
� For most chains, the distribution we end up in is 

independent of the initial distribution

� Called the stationary distribution of the chain

� Usually, can only predict a short time out

Web Link Analysis

� PageRank over a web graph
� Each web page is a state
� Initial distribution: uniform over pages
� Transitions:

� With prob. c, uniform jump to a
random page (dotted lines, not all shown)

� With prob. 1-c, follow a random
outlink (solid lines)

� Stationary distribution
� Will spend more time on highly reachable pages
� E.g. many ways to get to the Acrobat Reader download page
� Somewhat robust to link spam
� Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting 
less important over time) 31
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Hidden Markov Models

� Markov chains not so useful for most agents
� Eventually you don’t know anything anymore

� Need observations to update your beliefs

� Hidden Markov models (HMMs)
� Underlying Markov chain over states S

� You observe outputs (effects) at each time step

� As a Bayes’ net:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

Example

� An HMM is defined by:
� Initial distribution:
� Transitions:
� Emissions:
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Ghostbusters HMM

� P(X1) = uniform

� P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place

� P(Rij|X) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X|X’=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0
X5

X2

Ri,j

X1 X3 X4

Ri,j Ri,j Ri,j

E5


